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ABSTRACT: The goal of this project is to develop a cognitive model of expert ship-handling performance. This 
model was integrated with an intelligent tutoring system and an immersive visual simulation used by the U.S. Navy. 
This intelligent tutor and expert cognitive model (written in a Java-based version of ACT-R) provides feedback to the 
student based on the student actions in order to reduce workload on the instructors. The nature of ship navigation and 
the requirements for the intelligent tutor presented unique challenges for development. This paper describes how the 
resulting cognitive model balances a need for expert performance while compensating for student error, uses 
perceptual heuristics when the ACT-R vision module is not feasible, and how these and other issues affected model 
development. Future plans for system test and evaluation are also discussed in the context of improving training. 
 
1. Project Overview 
 
The Conning Officer Virtual Environment (COVE) is 
a ship-handling simulation system used by the U.S. 
Navy to train officers in how to complete ship 
navigation maneuvers (known in the U.S. Navy as 
ship-handling “evolutions”). These can include 
docking a ship, getting a ship underway, or twisting a 
ship about its axis. This training occurs after students 
undergo classroom instruction, so this simulation 
provides a hands-on practice environment for novices. 
COVE, which is based on the Virtual Ship software 
(Computer Sciences Corporation, 2009), is used to 
provide students with ship-handling training without 
the cost or risk to equipment of at-sea exercises. One 
downside to this system is that an expert instructor is 
required to constantly monitor progress and provide 
feedback, no matter how basic the exercise. 
 
In order to reduce the overall workload on instructors, 
the goal of this project was to develop a system 
consisting of a set of new components that interact 
with each other. One component is an intelligent tutor 
(Bratt, Schultz & Peters, 2007) that monitors student 
progress and provides appropriate feedback. The 
second component, and the subject of this paper, is a 
cognitive model (developed using a Java-based 
implementation of ACT-R; Harrison, 2009) of expert 
performance. This model is designed to represent 
expert performance in various ship navigation 
evolutions to provide a point of comparison against 
the actions taken by the student. 
 

The requirement that the model represent human 
performance led to the selection of ACT-R (Anderson, 
et al., 2004; Anderson, 2007) as choice of cognitive 
architecture to implement the specific cognitive and 
perceptual operations used in completing an evolution. 
The use of a cognitive architecture guides the creation 
of a system that represents human cognition (and its 
limits) instead of a computer-based algorithmic 
solution that ignores the constraints of cognition.  
 
The expert model was designed to provide the tutor 
with a sense of how an expert would perform the 
navigation evolution, including the actions taken, rules 
followed, and perceptual cues that are used. The entire 
system would then be able to give feedback to the 
student based on the actions taken and visual cues 
examined. While some cognitive models have been 
developed to operate with other components, few have 
been developed to support an intelligent tutoring 
system, and this presents a unique set of challenges. 
 
2. Description of System Components 
 
The task environment that the cognitive model 
operates in consists of multiple pieces. The primary 
component is the COVE simulation software itself. 
The simulation strives for realism in many important 
areas (Smallman & St. John, 2005), including 
elements in the visual environment such as 
hydrodynamics, weather, currents, piers, buoys, and 
ships. Some ships are also modeled in high-fidelity; 
that is, the physics of the engine and rudder are 
accurately modeled instead of the ship following a 
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simple speed and course. All of these elements are 
rendered in an immersive environment that can be 
displayed on a single monitor, in a more complex 
multiple monitor setup, or using a head-mounted 
display. A screenshot of the rendered scenario can 
been seen in Figure 1 (top). The multi-monitor setup is 
complete with head-tracking, control through voice 
recognition, text-to-speech capability, and a separate 
instructor console for monitoring performance. 
 
COVE scenarios are created using specially designed 
software that includes detailed real-world ports and 
realistic ships that are placed in the environment. 
Ships can be given a set of waypoints to follow, new 
physical objects can be added, and the weather can be 
changed using the scenario creator (Figure 1, bottom). 
 

 

 
Figure 1. 
 
The student interacts directly with the COVE 
simulation, issuing verbal commands, listening to 
responses and status reports, and viewing the 
environment and the ship under their command 
(known as “ownship”). The intelligent tutoring system 
adds two components into this dynamic – an 
intelligent tutor and expert model (Figure 2). The tutor 

monitors student progress and compare the student’s 
actions with those of the expert model in order to 
provide feedback. The expert model needs to 
accomplish various navigation evolutions and inform 
the tutor as to what actions were taken and why.  
 

 
Figure 2. 
 
This intelligent tutor/cognitive model system is 
designed to be implemented in the complex multi-
monitor COVE simulators, which presented many 
challenges, including how vision is accomplished. The 
ACT-R vision component can only handle a single 
display, so a software solution was created to 
compensate for this shortfall and will be described in 
further detail later in the paper. 
 
3. Ship Navigation Maneuvers 
 
Several different ship navigation tasks varying in 
complexity were modeled. One basic evolution is 
intersecting a range, where a ship is transiting and 
must make a turn to intersect a new heading. While 
this may seem trivial, there is much skill in knowing 
when to begin the turn, how hard to take the turn, and 
when to ease off the engines and rudder. Another 
basic evolution is twisting a ship in a box, which 
involves rotating the ship on its pivot point without 
moving the ship forwards or backwards. This is 
difficult because students often do not have previous 
experience performing this kind of maneuver, and 
managing the engines and rudder so that the ship does 
not move laterally is a challenge. 
 
Advanced navigation evolutions are also going to be 
modeled. To a great extent, these use more basic 
evolutions as building blocks (Rigeluth, 2007). For 
example, getting underway from the dock involves 
twisting the ship away from the pier, transiting 
forward and then making a turn to go out to sea. There 
is more to keep track of with these complex tasks, but 
they still use basic maneuvers at their core. 
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The intelligent tutoring system was not designed to 
replace the current ship-handling curriculum already 
in place. Instead, the system would augment training 
by supporting the scaffolding approach already taken 
by the course: begin by mastering simple maneuvers, 
then grow those into more complicated ones over the 
length of the training. The tutoring system supports 
both simple and complex maneuvers, so students can 
use the system throughout the course. 
 
All of these tasks are difficult for students to grasp due 
to a number of factors. The hydrodynamics of 
maneuvering a ship can be difficult to understand, 
since students rarely have prior experience with ship-
handling. Additionally, the tools available to affect the 
ship’s speed and heading (rudder, port and starboard 
engines, and a tugboat in some cases) work differently 
when used in different combinations. Finally, there is 
often a lag between issuing a command (e,g,, “All 
engines ahead full”) and observing the effect of that 
command (e.g., increased speed), so a comprehension 
of cause-and-effect can take time to develop. 
 
Another factor is that there are many paths to 
accomplish the same goal. One expert may attempt to 
increase the rate of ownship turn by increasing engine 
speed while another may instead decide to set the 
rudder farther over. Both options are correct, and it 
was important to capture all the possibilities. Also, 
different experts may teach their preferred method of 
accomplishing a task, increasing the necessity of the 
cognitive model and tutor to accommodate all the 
action paths available to the student. Finally, if the 
student deviates from a given parameter, the expert 
model must still function even if the action was not 
one of an “expert.” 
 
Implementing these ship navigation maneuvers in a 
cognitive model was difficult due to the perceptual 
nature of these maneuvers. Intersecting a range 
requires starting a turn, assessing speed through visual 
cues such as motion parallax (the apparent 
displacement of objects caused by a change in 
observer position), and lining up two separate range 
markers to ensure that the ship is in the ideal position 
in a harbor channel. These perceptual judgments often 
occur in the form of heuristics. An example heuristic 
used by baseball outfielders is that they will keep a 
constant visual angle between themselves and the ball 
instead of performing complex calculations (McBeath, 
Shaffer & Kaiser, 1995). These heuristics also apply 
to ship navigation and were implemented into a 
cognitive model. Determining how these strategies are 

used was derived from a combination of expert 
interviews and observing ship-handling performance.  
 
4. Expert Model Development 
 
ACT-R was a natural choice of cognitive architecture 
due to the requirement of cognitive plausibility of the 
expert ship-handling model. Due to the necessity for 
the cognitive model to communicate with COVE and 
the intelligent tutor, the model was developed in Java-
based jACT-R (Harrison, 2009) instead of Lisp-based 
ACT-R. Using Java increased compatibility with other 
system components and was more easily modified by 
those unfamiliar with Lisp, since Java is a more 
accessible language. jACT-R was designed to be as 
similar to ACT-R as possible, especially in terms of 
retaining the aspects of cognitive plausibility in the 
architecture. 
 
The primary focus of developing a cognitive model 
for this project is the accurate modeling of several 
factors. One factor involves the possible actions that 
an expert could perform in order to maneuver the ship, 
and another is the perceptual monitoring and scanning 
behaviors that takes place to ensure successful 
completion of a navigation task. 
 
4.1 Task Analysis Foundations for the Model 
 
In order to develop a cognitive model of expert ship 
navigation, subject matter experts from the Naval 
Surface Warfare Officers School were consulted over 
multiple sessions. One phase of information collection 
involved watching students practicing using COVE 
and examining the feedback that instructors provided 
them. By analyzing the tone (positive or negative) and 
content of the feedback (pre-action advise or post-
action critique), an understanding was developed of 
what aspects of ship-handling were emphasized and 
evaluated by human instructors. This influenced the 
development of the intelligent tutor as well as the 
expert model. For example, it became quickly 
apparent that the use of perceptual cues was critical to 
success. Also, a majority of the feedback came after 
an action was taken, so the student had to be allowed 
to make a mistake first. 
 
Another phase of information collection centered 
around how course instructors performed various ship-
handling maneuvers. Experts were interviewed and 
observed performing these tasks in the COVE 
simulator. These sessions were analyzed and distilled 
into cognitive task analyses. These took the form of a 
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traditional task analysis (which lists a sequence of 
observable tasks). Additionally, internal cognitive 
processes were also taken into account (Zachary, 
Ryder & Hicinbothom, 1999) and included. 
 
The task analysis framework known as GOMS (goal, 
operator, method, selection; Card, Moran & Newell, 
1983; John & Kieras, 1996) was selected for the task 
analysis because of the hierarchical nature of the 
tasks. There is a specific order as to which events 
happen, so representing tasks as a series of goals and 
sub-goals provided a great deal of benefit when 
translating these task analyses into cognitive models. 
For some navigation evolutions, GOMS-like task 
analyses were already completed (Grassi, 2000), so 
they were integrated into this project. 
 
However, navigation maneuvers do not lend 
themselves perfectly to GOMS modeling. GOMS does 
not take into account the perceptual cues that are used 
in ship navigation. As an example, Figure 3 shows 
two range markers (the orange and white boards) that 
serve as a visual cue for ownship heading when they 
are lined up with the bow jackstaff. While GOMS is 
able to support a goal such as “Monitor speed until 
desired heading achieved,” there are a number of 
perceptual cues that indicate heading (such as range 
markers) that may be used in various combinations, 
and GOMS does not include a method for 
incorporating these visual cues. 
 

 
Figure 3. 
 
Due to this shortfall, a Critical Cue Inventory (CCI) 
was created to support a list of perceptual cue 
descriptions that could be used to accomplish a goal.  
The CCI could also include heuristics as to when a 
particular visual cue is more likely to be used, which 

aided in building the expert cognitive model. An 
example truncated CCI used for determining the rate 
of swing of the bow can be found in Table 1. 
 
Table 1. 

Critical Cue Inventory for: 
Determine Rate of Swing of Bow 

CUE DESCRIPTION 
Jackstaff Examine the rate of swing of the 

jackstaff compared to a fixed 
environmental object. Used when 
there is a physical landmark present. 

  

Rate of Turn 
indicator 

Interpret the Rate of Turn visual 
indicator in the COVE instrument 
cluster. 

  

Change in 
heading 

Determine how quickly the heading 
is changing over time using the 
various heading indicators. Used 
when there is a lack of landmarks. 

 
4.2 Goal Stack Component 
 
The cognitive model built in jACT-R used many 
standard components in ACT-R models, including the 
goal and retrieval buffers. Nonetheless, there are 
several noteworthy characteristics of the model that 
arose from project requirements. The first is the 
implementation of a goal stack that drives the entire 
execution of the cognitive model. Due to the 
hierarchical nature of navigation evolutions, it is only 
natural to create a chunk that can hold multiple goal 
levels in the goal buffer. Various productions push 
and pop goals from the stack, and the state of the goal 
stack is checked during the conflict resolution process 
to determine which production to fire next. 
 
Certain steps in a navigation evolution must occur at a 
specific time, and properly utilizing the goal stack 
assisted with this need. Knowing when a turn is 
complete, for example, requires monitoring ownship 
heading or lining up the jackstaff with an 
environmental object. The production to stop the turn 
(i.e., “approaching-heading-NOW-stop-turn”) needs to 
fire when the goal stack matches specific conditions. 
The bottom of the goal-stack needs to match the basic 
goal of “make-turn,” and a goal at the top needs to 
match the goal of “monitor-until-desired-heading-
reached.” Once these conditions are met, the 
production “pops,” or removes, the old goal from the 
stack and “pushes” on a new goal which, presumably, 
would stop the turn by shifting the rudder or slowing 
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the engines.  
 
This implementation aids in creating generic 
productions that are needed by many different higher-
level goals and may occur multiple times throughout 
an evolution (e.g., “activate-rudder”). The entire goal 
stack does not need verification – instead, the 
production only needs to check the top goal. None of 
the other goals below need to be checked – for 
example, it does not matter whether a lower-level goal 
is “make-turn” or “twist-ship.” Either way, the rudder 
must be activated. Another advantage from being able 
to check specific goals within the goal stack is that 
multiple possible action paths to complete a task are 
easily implemented. 
 
Figure 4 contains a jACT-R pseudocode example that 
checks the goal stack. The top production is generic 
and may be called multiple times in an evolution. This 
production also does not need to verify the entire goal 
stack. The bottom production must occur at a specific 
time and checks each level of the goal stack. 
 

<!-- This generic production only needs to  
ensure the top goal is to issue the engine order --> 
  <production name="issue-starboard-engine-order"> 
    <conditions> 
      <match buffer="goal" > 
        <slot name="goal-2" equals="issue-starboard-
engine-order"/> 
... 
 
<!-- This specific production ensures the top goal 
matches the desired goal and the other goals also 
match (or are clear) --> 
  <production name=”monitor-speed-heading-until-
turn-time”> 
    <conditions> 
      <match buffer=”goal” >  
        <slot name=”goal-1” equals=”ownship-ahead”/> 
        <slot name=”goal-2” equals=”monitor-until-turn-
time”/> 
        <slot name="goal-3" equals="clear"/> 
        <slot name="goal-4" equals="clear"/> 
... 

Figure 4.  
 
4.3 Use of Perceptual Cues 
 
There are many visual cues in the environment that an 
expert uses to properly execute ship maneuvers. It was 
necessary to pull this information from the COVE 
simulation directly instead of going through the jACT-
R vision module, but it was critical to maintain 
cognitive plausibility for vision in the model, so the 
software pulling information from the COVE 
simulation must act “behind the scenes” to fill a 

jACT-R buffer that is accessible to the model. Even a 
basic subgoal, such as visually scanning to assess ship 
status (speed, heading, etc.) required accurate 
cognitive modeling. Experts will often alternate 
between paying attention to the environment and to 
the ship status indicators while executing a navigation 
evolution, and cycling between these objects takes 
place frequently. This behavior was assessed in 
experts through interviews and head-tracking within 
the COVE system. 
 
This scanning behavior was inserted into the model so 
the expert model’s current awareness of the situation 
correctly reflects the experience of a human expert. 
From this, the intelligent tutor can detect if the student 
is exhibiting similar scanning behavior. If this was not 
the case, the tutor can issue prompts to the student to 
check speed, heading, rudder status, and other 
important parameters. 
 
Another example that demonstrates the criticality of 
the vision system is the monitoring of specific 
perceptual thresholds (e.g., to know when to begin and 
end turns, when ownship is far enough away or close 
enough to the dock, etc.). Experts do not intently stare 
at one location in the environment waiting for this 
threshold to be passed, nor are they able to focus on 
more than one area at once. Instead, scanning behavior 
is used (again derived from interviews and head-
tracking), and the expert model needed to accurately 
capture this behavior. 
 
The standard vision module within jACT-R is able to 
gather visual information from a display using 
attentional and imagery constructs, and locations are 
represented by their x- and y-positional screen 
coordinates. This vision scheme has been 
implemented successfully in heavily perceptual tasks 
such as driving (Salvucci, Boer & Liu, 2001). 
However, the COVE simulation is too complex to use 
the relatively basic jACT-R vision module. This is 
because the visual scene is distributed amongst 
multiple monitors and computers, which the vision 
module cannot handle. Instead, information must be 
passed directly from the simulation to the Java core of 
jACT-R using a client-server model. This information 
is then inserted into a buffer created for this model. 
 
The solution to this problem was to implement 
“vision” through external software. COVE generates 
the rendered environment and keeps track of some 
environmental objects (e.g., piers), the environmental 
conditions (e.g., current and wind speed), and the 
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status of all the ships (e.g., speed and course of 
ownship, tugs, etc.). The simulation does not keep 
track of objects such as buoys, and the locations of 
those objects had to be measured manually and 
inserted into a separate database. Together, these 
components possessed the information that the expert 
cognitive model would otherwise try and obtain 
through more traditional means of vision. It was more 
efficient and easier to retrieve the necessary 
information about the environment directly from 
COVE instead of attempting to adapt the jACT-R 
vision module. 
 
A technical necessity for the entire tutoring system 
was the separation of various system components. The 
COVE simulation needed to remain a separate entity. 
While the expert model is an important piece of the 
intelligent tutor, the tutor itself also needed the option 
to run as a standalone component. Due to the need for 
separation between each system component, software 
bridges were built to interface between the COVE 
software, the Java core of jACT-R, and the intelligent 
tutor. The bridge between COVE and jACT-R 
requests information from COVE and then fills a 
custom jACT-R buffer that is accessible by the 
cognitive model. This buffer was programmed as an 
Eclipse IDE plug-in and imported into jACT-R. 
 
A simple example will help illustrate this process. In 
the case of monitoring ownship speed, a human expert 
would look down at a console (on a monitor separate 
from the rendered environment) and read off the 
speed. For the cognitive model to do this, it would 
request the speed from the COVE-ship-state buffer 
(similar to requesting a particular chunk from the 
retrieval buffer) first. This buffer is refreshed by the 
COVE/Java bridge, which periodically queries the 
COVE software as to the state of the simulation, 
which includes ownship speed information. 
 
This software bridge allows for the simulation of 
many of the visual cues utilized by human experts but 
is pulled directly from the simulation. Therefore, the 
perceptual cues and heuristics used by human experts 
are still present in the cognitive model because the 
software bridge is abstracted away from the model. 
This abstraction allows for the ability of the model to 
accomplish something akin to traditional vision in a 
cognitively plausible manner. 
 
4.4 Cognitive Plausibility 
 
Defining cognitive plausibility for this expert 

cognitive model was different from many other 
models. The purpose of the expert model within the 
tutoring system is to act as an “answer key” to 
compare against student actions. Therefore, the expert 
is not supposed to commit errors. For example, there 
is no need to learn new actions, nor is there need for 
millisecond accuracy in cognitive function. Also, 
memory decay was not implemented. Instead, the 
expert model implemented visual scanning behavior 
between the environment and ownship status 
indicators to refresh memory. This reflects student 
behavior because they are often told not to trust their 
own memory. 
 
A plausible expert, especially one that is used as a 
yardstick to measure human students against, should 
always perform an evolution as flawlessly as possible. 
However, an expert model that is part of a tutoring 
system must also be able to adapt to student behaviors, 
which are not always optimal. The first iteration in 
creating a model for any ship-handling evolution 
represented optimal performance of a maneuver. Once 
this was achieved, multiple action paths were built out 
from this single path. For example, the expert model 
knows the optimal distance from a range in which to 
make a turn, and this behavior is the model default. If 
the student overshoots this range, the expert model 
was designed to compensate for the error. This action 
path may result in using a greater amount of rudder 
than is typically called for. While suboptimal, it was 
important that the model possess these behaviors both 
for some degree of cognitive plausibility and to be a 
useful components of the intelligent tutor. 
 
One area where it was especially important to 
maintain cognitive plausibility was in visual scanning 
behavior. If a computer program was written that did 
not take into account the limits of human cognition, 
then a student would be compared to a computer 
instead of a simulated human expert. While a 
computer could monitor multiple information streams 
at once, this would not reflect human cognition. 
Instead, a reflection of expert human behavior would 
require scanning multiple sources of data in a serial 
manner. 
 
5. Empirical Validation 
 
Traditional validation of cognitive models seeks to 
match human performance with that of the model, 
typically on a temporal scale. For example, an 
accurate cognitive model of visual search should 
generate target detection times that are similar to 
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human reaction times. Here, we are attempting to 
match the perceptual actions of an expert instead. The 
actions taken by the model do need to occur with 
some degree of temporal accuracy, but the millisecond 
modeling accuracy of jACT-R is not necessary for this 
application. 
 
An important first step of validation involves 
demonstrating a complete system to the instructors 
who will be using the system for instruction. This has 
already been done with the standalone intelligent tutor 
system, which only contained rudimentary knowledge 
about ship-handling (e.g., maximum limits on speed). 
The system was well-received by instructors, who 
noted that feedback on perceptual components of the 
task would add to the utility of the final product. 
 
Further validation steps have not occurred but are 
currently being planned. One important step in this 
model validation plan will examine how the entire 
tutoring system performs when a novice student uses 
the simulation. This will be tested on actual students 
taking a ship-handling course, but can also be tested 
on non-student novices. The critical data to collect 
from these experiments is the performance of the 
expert model. This is to ensure that the model was 
able to traverse the multiple action paths in response 
to student performance. For example, if a novice stops 
a turn too late, the model should react by shifting the 
rudder in the opposite direction. If the model had 
direct control of the ship, this mistake should not have 
happened in the first place. However, the model does 
not have control and must compensate for many errors 
that a novice can make. This will require many 
novices and hours of testing, but will serve to make a 
more robust model. 
 
A critical final test of the intelligent tutor and expert 
model system is to determine how training is 
improved with use of this system. Improvement will 
be measured along several factors, including 
performance in ship maneuvering (measured across 
several variables such as time to completion and 
deviation from optimal channel position), amount of 
training retention, and number of human instructor 
hours required during training. The hope is that the 
tutor can increase the number of students that a single 
instructor can supervise while maintaining the same 
level of (or improving) training effectiveness. 
 
6. Conclusions 
 
While there have been other projects that have 

integrated a cognitive model into a larger framework, 
these have mostly focused on training applications by 
creating a simulated teammate to work with other 
humans (Scolaro & Santarelli, 2002; Ball, et al., 
2009). The project described here also works within a 
larger framework, but not in a team context. Instead, 
the model represents a single expert that changes its 
behavior in direct response to student actions.  
 
This project presents a unique application of the 
jACT-R cognitive architecture in many ways. The 
requirements for the project necessitated the 
development of an expert cognitive model that needed 
to balance cognitive plausibility with near-flawless 
expert performance, perceptual heuristics without 
actual vision, and multiple action paths with an 
emphasis on tutoring. As intelligent tutoring systems 
are becoming increasingly popular, it is important to 
understand how cognitive modeling can add to these 
systems in a useful way. 
 
While an expert model “answer key” cannot make 
mistakes such as memory retrieval failures, the model 
must compensate for student errors in order to remain 
useful. This required a far more extensive knowledge 
gathering period in order to explore task performance 
more fully, and also requires a greater testing period to 
ensure that many practical possibilities for behaviors 
that deviate from the optimum are accounted for. 
 
Intelligent tutoring systems are often used in complex 
environments, which requires ACT-R models to 
perceive information that cannot be retrieved through 
the current, primitive vision module. Instead, software 
bridges must interface between the simulation and 
ACT-R itself, but the simulation environment must 
remain abstracted away from the model to maintain 
cognitive plausibility. Overall, cognitive modeling has 
a great deal to offer intelligent tutoring systems, and 
an optimal methodology to create these models is 
currently being shaped. 
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